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S2.1 The plethora of regularization tuning meth-
ods

Choosing a method to tune regularization is non-trivial. Bauer and Lukas[1]
compared 17 regularization parameter choice methods for a large set of linear
least squares problems. Apart from the numerical case studies, they also pro-
vided a unified framework to discuss the numerical aspects of each method, and
the performance of the regularization methods from the estimated parameters
point of view. We can see that most of the methods work very well in terms
of achieving a small mean square error in the estimated parameters. However,
small parameter estimation error do not imply small prediction errors.

Most of the regularization tuning methods can be used together with non-
linear least squares (NLS) methods, such as e.g. the Landweber algorithm, the
iteratively regularized Gauss Newton method or conjugate gradient method [2].
These optimization methods iteratively update the parameter estimates by a
suitable step for which the residual vector or the objective function (depending
on the method) is linearized in each step and the regularization is applied to
the steps. Our approach is different, since we apply the regularization directly
to the parameter vector instead of the updating steps, which allow us to use the
regularization in both the global and the local optimization phases.

In the following section we shortly summarize the regularization tuning
methods considered and their computational details, which we utilized for the
Tikhonov regularization of the hybrid optimization algorithm presented in the
main text. In the following sections we also report the results of the regulariza-
tion tuning methods for each case study. For each problem, the regularization
parameter selected by the regularization tuning method is compared against
the bias-variance trade-off curves (both for the bias-variance in the estimated
parameters and in the estimated predictions). Note that the performance of
a tuning method is evaluated based on the distance of the selected regulariza-
tion parameter from the location of the minimum of the bias-variance trade-off
curves.
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S2.2 Tuning methods

In this section we utilize the following notations. We consider a set of regular-
ization parameters as α1 > α2 > · · · > αi > . . . αI > 0. In practice this set of
regularization parameters constitutes a geometric series, i.e. αi+1/αi = q < 1

for ∀i. The estimated parameter vector (θ̂αi(y
δ)) obtained by the calibration of

the kinetic model to the experimental data (yδ) using the regularization param-
eter αi is denoted shortly by θδi , where δ indicates the measurement noise level
in the data. The total number of measurement data is denoted by N .

The residual vector evaluated at the estimated parameter is Ri = R(θδi ) =
y(θδi )−y

δ

σ and its Jacobian matrix also evaluated at the estimated parameter is

denoted by Ji = ∂Ri
∂θ . Further, ||x|| denotes the Euclidean norm of the vector x.

S2.2.1 Discrepancy principle

The discrepancy principle [3] is one of the most used and analysed tuning
method. The discrepancy principle selects the largest regularization parame-
ter for which the discrepancy between the model prediction and the data is
similar to the measurement error. Thus it avoids over-fitting of the model. It
is known that the discrepancy principle requires an accurate knowledge of the
measurement error.

The optimal regularization parameter selected by the discrepancy principle
is the first regularization parameter (αi) for which

||Ri|| ≤ τδ
√
N, (S2.2.1)

where τ > 1 is a tuning parameter and δ is the standard deviation of the
elements of the residuals (the measurement error). It is non-trivial to select
the τ tuning parameter, since if the real measurement error is larger than τδ,
the method is unstable, and therefore τ > 1 should be used [4]. On the other
hand, τ > 1 can over-regularize the solution [5]. We used τ = 1.5 as in [1]. The
principle has the appealing simplicity of computation, which do not require any
linearization.

In our formalism the residual vector is weighted by the inverse of the standard
deviation of the data (see Equation (3) in the main text). Thus, our a priori
knowledge about the measurement error is already in the formulated objective
function and so we set δ = 1.

Results. We found that the discrepancy principle selected too large regular-
ization parameters in most of the case studies (for both the parameter estimates
and model predictions).

S2.2.2 Transformed discrepancy principle

In the case of the transformed discrepancy principle, instead of comparing the
observed error in the fit to some a priori level (as in (S2.2.1)), the residual error
is transformed to the parameter space and measured against an approximated
bound to the parameter estimation error [1]. This procedure is more stable
than the discrepancy principle and less sensitive to correct knowledge of the

2



measurement error [6]. The transformed discrepancy principle in our linearised
framework reads as

||(JTi Ji + αiW
TW )−1JTi Ri|| ≤ bδ

√
N
√
αi

(S2.2.2)

where b is a constant tuning parameter (0.4872 as in [1]).

Results. We found that the transformed discrepancy principle also selected
too large regularization parameters in most of the case studies for both the
parameter estimates and model predictions.

S2.2.3 Modified discrepancy principle

The mean squared error in the parameter estimates can be decomposed into the
sum of (i) propagated error and (ii) regularization error. The inverse operation
amplifies the measurement error in the data, which can cause large error in the
estimated parameters. This type of error is called the propagated error and
it decreases with larger regularization parameter. The regularization error is
caused by the fact, that the true parameters are unknown, therefore the reg-
ularization term biases the estimates towards the reference parameters vector.
This bias increases with increasing regularization parameter.

Gfrerer [7] and later Engl and Gfrerer [8] have developed a method which
minimizes the mean squared error of the parameter estimates by taking the
derivatives of the regularization error and the propagated error by the regular-
ization parameter. The method is also known as the minimum bound method.
When the differentiation by the regularization parameter is approximated by fi-

nite differences (dθi/dαi ≈
θi − θi+1

−αi log(q)
, where q = αi+1/αi as in [1]), the method

chooses the largest regularization parameter for which√
αi

− log(q)
||RTi (JiJ

T
i + αiIN )−1(θi − θi+1)|| ≤ τδ, (S2.2.3)

where IN is the N -dimensional identity matrix and τ is a tuning parameter,
which was set to 1.5.

Results. When the selected candidate was compared to the bias-variance
trade-off curves, we found that the method performed well for the 3SMP, CHM,
ScCHM, slightly over-regularized for the problems MAPK, TGFB, GOsc and
BBG, but severely over-regularized the problem comparing to the bias variance
trade-off for the problems AP and FHN.

S2.2.4 Monotone error rule

The monotone error rule [9] uses the fact that for large regularization the mean
parameter estimation error is dominated by the regularization error, which grad-
ually decreases as the regularization parameter decreases. After adapting the
formula from [1] for the linearized framework, the method choose the largest
regularization parameter for which

||RTi (JiJ
T
i + αiIN )−1(θi − θi+1)||

||(JiJTi + αiIN )−1(θi − θi+1)||
≤ τ
√
Nδ, (S2.2.4)
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where IN is the N -dimensional identity matrix and τ is a tuning parameter,
which was set to 1.5.

Results. We observed that this tuning method resulted in small mean squared
parameter estimation error for linear problems, but large prediction errors. In
all the case studies the largest regularization parameter was selected, which is
a severe over-regularization.

S2.2.5 Balancing principle and hardened balancing prin-
ciple

The balancing principle [10] equalize the upper bound of the propagated error
with the regularization error. The propagated error bound δ2ρ2i for the mean
squared parameter estimation error in case of Tikhonov regularization and un-
correlated noise is

δ2ρ2i =

Nθ∑
l=1

(
σl,i

σ2
l,i + αi

)2

, (S2.2.5)

where σ1,i, σ2,i . . .σNθ,i are the singular values of the Jacobian matrix Ji. The
regularization error is estimated by the differences of the subsequent parameter
candidate vectors as ||θi − θi+1||.

Then a balancing functional is defined for each regularization parameter as

b(n) = max
n<i≤Imax

||θi − θi+1||
4δρi

(S2.2.6)

and its smooth, monotonically decreasing variant B(n) = maxn<i≤Imax b(n).
The balancing rule choose the first regularization parameter for whichB(n) <

τ , where τ is a tuning constant (τ = 1).
In case of hardened balancing [11] the regularization parameter is selected

for which B(n)
√
ρn takes its minimum. Thus the hardened balancing principle

does not need a tuning parameter and the estimate of the measurement error δ
is also not required.

Results. In linear ill-posed problems the parameter estimates usually grow
very fast as the regularization parameter decreases, which results in (exponen-
tially) growing values for ||θi − θi+1||. However, this was not observed in our
(non-linear) case studies. Rather, we observed some saturation in the parameter
values as the regularization decreases. This is probably the reason why both
the balancing principle and the hardened balancing principle performed poorly.

S2.2.6 Quasi optimality

The quasi optimality principle [12] use the fact that for large regularization
parameter the differences between the subsequent parameter estimates (||θi −
θi+1||) are large due to the large regularization error. On the other hand, for
very small regularization parameters, large values for (||θi − θi+1||) is expected,
because of the ill-conditioning and large variance of the estimates. Thus the
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quasi optimality criteria choose the regularization parameter for which the dif-
ferences are minimized as

αopt = arg min
αi>αImax

||θi − θi+1|| (S2.2.7)

here Imax is a maximum index (i.e. αImax is a minimal regularization parameter)
that is a required user input. Note that for very small regularization parameter
we would not observe any differences between the parameter estimates and thus
the difference would be numerically zero.

Results. It was difficult to automatically find a proper minimum index for the
regularization parameter, which caused under-regularized solutions for some of
the case studies. Although the method worked reasonably well for the MAPK
case study, in the other cases resulted in either under regularized or over-
regularized parameter estimates.

S2.2.7 L-curve methods

Hansen [13, 14] developed the L-curve method for tuning the regularization of
ill-posed problems. When the norm of the parameter estimates (||θi||) is plotted
against the norm of the residuals (||Ri||) for the set of regularization candidates
i = 1, 2 . . . I, one can visualize the set of points in the Pareto optimal front.
In the linear case the points make up an L-shaped curve. The horizontal part
is formed by the solutions corresponding to large regularization parameters,
where the regularization bias is dominating. On the vertical part of the L-curve
a small reduction in the least-squares error usually causes a large increase in the
parameters and the propagated error is dominating the mean squared parameter
estimation error. Intuitively, the optimal regularization parameter that balances
the two types of error is located near the corner of the L-shaped curve. The
corner point can be identified by detecting the largest curvature of the points
||θi||, ||Ri|| as in [13, 12] (will be denoted by LCC), or where the slope of the
tangent of the point equals to minus one [15] (referenced as LCR).

The curvature of the points can be calculated using finite differences of the
points, for which we used the lineCurvature2D tool for MATLAB. The Reginska
version is equivalent to find the optimal regularization parameter by

αopt = arg min
αi
||θi|| · ||Ri|| (S2.2.8)

Results. We have obtained rather different results for the curvature based
(LCC) and the tangent slope based (LCR) L-curve methods. Typically, the LCR
chose larger regularization parameters than the LCC method. Both performed
well on case studies GOsc, FHN and CHM. LCR over-regularized the solutions
while the LCC performed well for TGFB, MAPK, scCHM, 3SMP and AP. Both
variants performed rather poorly for the BBG case study.

S2.2.8 Extrapolated error method

Brezinski [16] developed an error estimation method applying as tuning method
for Tikhonov regularization. The method choose the regularization parameter
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as

αopt = arg min
αi

||Ri||2

||JTRi||
. (S2.2.9)

Results. For most of the case studies the EEM gave over-regularized solutions.

S2.2.9 Residual method

Originally developed for truncated singular values decomposition based regular-
ization [17], the residual method (RES) operates in the prediction space. First
a quantity Bi = Ji(I − (JiJ

T
i + αiIN )−1JTi ) is defined and then the method

chooses the regularization parameter for which the weighted residuals is mini-
mized as

αopt = arg min
αi

||Ri||
trace(BTi Bi)

1/4
(S2.2.10)

Results. In almost all the case studies the RES method selected the largest
regularization parameter among the candidates, thus over-regularizing the so-
lutions.

S2.2.10 Generalized cross validation methods

In the so-called leave-one-out (LOO) cross validation, a model is fitted to all but
one data point in a step and the fitted model is used to predict the hold out data
point. Then, the process is repeated until each data point is left out once. The
model can be evaluated based on the discrepancy between the predictions and
data (LOO prediction error). The generalized cross validation (GCV) technique
uses the fact that there is an explicit formula for the computation of the LOO
prediction error, i.e. the fitting of the linear model do not have to be repeated
as many times as the number of data points.

Golub et al [18] and Wahba[19] developed the method of generalized cross
validation, and a number of variants appeared later. Here we considered a
variant in the linearized framework [20] as follows. The basic principle is to
weight the observed residual error by the effective number of degrees of freedom.
The GCV method chooses the regularization parameter as

αopt = arg min
αi

||Ri||2

( 1
N trace(I − J(JiJTi + αiIN )−1JTi ))2

. (S2.2.11)

In [18] a slightly different version appeared, which results in differences when
the linearization is applied

αopt = arg min
αi

||(I − J(JiJ
T
i + αiIN )−1JTi )Ri||2

( 1
N trace(IN − J(JiJTi + αiIN )−1JTi ))2

. (S2.2.12)

Two known drawbacks of the GCV criteria is its behaviour in the case of cor-
related noise and the flatness of the criteria near the optima, which can lead to
under-regularized solutions. To overcome this issue, two variants of the GCV
method, the robust generalized cross validation method (RGCV) [21] and the
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strong robust generalized cross-validation (SRGCV) criteria have been devel-
oped by Lukas[22]. In our framework, we compute the optimal regularization
parameter based on the RGCV criteria as

Fi = trace(I − Ji(JiJTi + αiIN )−1JTi ) (S2.2.13)

αopt = arg min
αi

||Ri||2

( 1
N Fi)

2
(γ + (1− γ)

1

N
F 2), (S2.2.14)

where γ is a tuning parameter (note that γ = 1 leads to the GCV formula),
which was set to 0.1 as in [1]. The SRGCV criteria is computed as

Gi = (JiJ
T
i + αiIN )−1JTi (S2.2.15)

αopt = arg min
αi

||Ri||2

( 1
N JiGi)

2
(γ + (1− γ)

1

N
trace(GTi Gi)), (S2.2.16)

where the tuning parameter γ was set to 0.95.

Results. We observed that all the considered four variants of the general-
ized cross-validation based method resulted in similarly good results for all our
case studies. Typically, the RGCV and the GCVG selected slightly larger reg-
ularization parameter than the SRGCV and the GCV rules. However, these
regularization parameters were still close to the optima of the bias-variance
trade-off curves.
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S2.3 Biomass batch growth (BBG)
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(a) Bias-variance trade-off for estimated
parameters
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(b) Bias-variance trade-off for model pre-
diction

10
−3

10
−2

10
−1

10
0

10
1

DP

MDP

TDP

MER

BP

HBP

QO

LCC

LCR

EEM

RES

GCVG

GCV

RGCV

SRGCV

regularization parameter

(c) Optimal regularization parameter based
on different tuning methods

Figure S2.3.1: Biomass growth model. Bias-variance trade-off and regulariza-
tion tuning methods.
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S2.4 Goodwin Oscillator (GOsc)
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(a) Bias-variance trade-off for estimated
parameters
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(b) Bias-variance trade-off for model predic-
tion
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Figure S2.4.2: Goodwin’s oscillator model. Bias-variance trade-off and regular-
ization tuning methods.
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S2.5 FitzHugh-Nagumo model (FHN)
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(a) Bias-variance trade-off for estimated
parameters
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(b) Bias-variance trade-off for model pre-
diction
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Figure S2.5.3: FitzHugh-Nagumo model. Bias-variance trade-off and regular-
ization tuning methods.
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S2.6 TGF– β signalling pathway model (TGFB)
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(a) Bias-variance trade-off for estimated
parameters
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(b) Bias-variance trade-off for model pre-
diction
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Figure S2.6.4: TGF-β Signalling Pathway Model. Bias-variance trade-off and
regularization tuning methods.
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S2.7 Kholodenko MAPK signalling pathway (MAPK)
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(a) Bias-variance trade-off for estimated
parameters
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(b) Bias-variance trade-off for model pre-
diction
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Figure S2.7.5: MAPK pathway model. Bias-variance trade-off and regulariza-
tion tuning methods.
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S2.8 Chemotaxis signalling pathway model (CHM)
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(a) Bias-variance trade-off for estimated
parameters
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(b) Bias-variance trade-off for model pre-
diction
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Figure S2.8.6: Chemotaxis Signalling Pathway model. Bias-variance trade-off
and regularization tuning methods.
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S2.9 3-Step Metabolic pathway model (TSMP)
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(a) Bias-variance trade-off for estimated
parameters

10
−2

10
0

10
2

0

2

4

6

8

10

12

14

16

x 10
−4

regularization parameter

Bias−variance tradeoff of prediction estimates

 

 

bias
2

variance

(b) Bias-variance trade-off for model pre-
diction
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Figure S2.9.7: 3-Steps Metabolic Pathway Model. Bias-variance trade-off and
regularization tuning methods.
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[15] Regińska, T.: A Regularization Parameter in Discrete Ill-Posed Problems.
SIAM Journal on Scientific Computing 17(3), 740–749 (1996)

[16] Brezinski, C., Rodriguez, G., Seatzu, S.: Error estimates for linear sys-
tems with applications to regularization. Numerical Algorithms 49, 85–104
(2008)

[17] Bauer, F., Mathe, P.: Parameter choice methods using minimization
schemes. Journal of Complexity 27, 68–85 (2011).

[18] Golub, G.H., Heath, M.T., Wahba, G.: Generalized cross-validation as
a methodforchoosingagood ridge parameter,. Technometrics 21, 215–223
(1979)

[19] Wahba, G.: Practical Approximate Solutions to Linear Operator Equations
When the Data are Noisy. SIAM Journal on Numerical Analysis 14(4),
651–667 (1977)

15



[20] O’Sullivan, F., Wahba, G.: A cross validated bayesian retrieval algo-
rithm for nonlinear rempte sensing experiments. Journal of Computational
Physics 59(3), 441–455 (1985)

[21] Lukas, M.A.: Robust GCV choice of the regularization parameter for cor-
related data. The Journal of integral equations and applications 22(3),
519–547 (2010)

[22] Lukas, M.A.: Strong robust generalized cross-validation ot choosing the
regualrization parameter. Inverse Problems 24(3) (2008)

16


	The plethora of regularization tuning methods
	Tuning methods
	Discrepancy principle
	Transformed discrepancy principle
	Modified discrepancy principle
	Monotone error rule
	Balancing principle and hardened balancing principle
	Quasi optimality
	L-curve methods
	Extrapolated error method
	Residual method
	Generalized cross validation methods

	Biomass batch growth (BBG)
	Goodwin Oscillator (GOsc)
	FitzHugh-Nagumo model (FHN)
	TGF– Beta signalling pathway model (TGFB)
	Kholodenko MAPK signalling pathway (MAPK)
	Chemotaxis signalling pathway model (CHM)
	3-Step Metabolic pathway model (TSMP)

